
UG286: ClockBuilderPro™ Field
Programmer Kit

This document describes how to use the ClockBuilder Field Pro-
grammer Kit (“CBPROG-DONGLE”) with ClockBuilder Pro™

(“CBPro”) to support four programming models.
Refer to the text and table below for supported uses:

1. In-socket Firmware / NVM Programming
• Firmware programming of a Si5383/84 device. Silicon Labs provides a 56-pin

socket adapter board for this purpose.
• NVM programming of “base” devices (e.g., Si5341A-A-GM), or any other facto-

ry “pre-programmed” device (e.g., Si5341A-A12345-GM) which has unused
NVM banks. Silicon Labs provides 32-pin, 40-pin, 44-pin, 48-pin, and 64-pin
QFN socket adapter boards for this purpose.

2. In-system Firmware / NVM Programming
• Firmware programming of a Si5383/84 devices already mounted on a system

PCB. Users are encouraged to include a standard 10-pin header on their PCB
to allow the Si538x4x Field Programmer board and ribbon cable to easily con-
nect to the USB to SPI/I2C adapter.

• NVM programming of Si538x/4x devices already mounted on a system PCB.
Users are encouraged to include a standard 10-pin header on their PCB to al-
low the Si538x4x Field Programmer board and ribbon cable to easily connect to
the USB to SPI/I2C adapter.

3. In-system Volatile Register Programming
• Devices mounted on a PCB (e.g., use the Design Dashboard and EVB GUIs to

inspect status registers, make volatile configuration updates, debug system
firmware, etc.).

4. In-socket Volatile Register Programming
• Devices mounted in the socket (e.g., use the Design Dashboard and EVB GUIs

to inspect status registers, make volatile configuration updates, debug system
firmware, etc.).

KEY POINTS

• Shows and provides a brief explanation of
the Field Programmer kit contents

• Points users to CBPro download and
installation instructions

• Explains hardware configuration
• Describes the four programming models to

use with the CBPROG-DONGLE
• Includes CBPROG-DONGLE and socket

board schematics
• Offers bill of materials
• Includes troubleshooting appendix for

common issues

Table .1. Supported Programming Models

Location of Target
Device

Software Utility and
Programming Model Supported

NVM Burn Tool EVB GUI / Dashboard

In-socket Yes (1) Yes (4)

In-system Yes (2) Yes (3)

silabs.com | Building a more connected world. Rev. 1.2

http://www.silabs.com/CBPro

1. Kit Contents

Shown below is a diagram of how the various components in the Field Programmer kit are connected to one of the QFN socket adapter
boards, or to a PCB for in-system programming.

Figure 1.1. Example Hardware Configuration (Using QFN Socket Board or Customer PCB)

Figure 1.2 CBPROG-DONGLE Kit Contents on page 2 shows the kit contents for the CBPROG-DONGLE kit. Note in the figure on
the following page that the 32-pin, 40-pin, 44-pin, 48-pin, and 64-pin sockets are available separately as part numbers Si5332-32SKT-
DK, Si5332-40SKT-DK, Si538x4x-44SKT-DK, Si5332-48SKT-DK, Si538x4x-56SKT-DK, Si538x4x-64SKT-DK, respectively. The Clock
Builder Pro Field Programmer resources including schematics, layout files, and BOM can be found at www.silabs.com/CBProgrammer.
Note that the sockets are sold as separate kits.

Figure 1.2. CBPROG-DONGLE Kit Contents

UG286: ClockBuilderPro™ Field Programmer Kit
Kit Contents

silabs.com | Building a more connected world. Rev. 1.2 | 2

http://www.silabs.com/CBProgrammer

Figure 1.3. Si5332-32SKT-DK, Si5332-40SKT-DK, Si538x4x-44SKT-DK, Si5332-48SKT-DK, Si538x4x-56SKT-DK,
Si538x4x-64SKT-DK Sockets Sold Separately

UG286: ClockBuilderPro™ Field Programmer Kit
Kit Contents

silabs.com | Building a more connected world. Rev. 1.2 | 3

2. Software Download and Installation

To install the CBPro software on any Windows 7 (or above) PC, go to http://www.silabs.com/CBPro and download the ZIP file to install
the software on your host PC.

UG286: ClockBuilderPro™ Field Programmer Kit
Software Download and Installation

silabs.com | Building a more connected world. Rev. 1.2 | 4

http://www.silabs.com/CBPro

3. Hardware Configuration

The Field Programmer Dongle acts as an interface between the CBPro GUI and the target device (any supported Si5332, Si534x, or
Si538x IC). Connect the provided USB cable to your PC and the CBPROG-DONGLE. The CBPROG-DONGLE is then connected to the
target device using the provided cables or a programming socket, depending upon the four ways you may use the programmer as de-
tailed in Section 4. Ways You can Use the Programmer.

UG286: ClockBuilderPro™ Field Programmer Kit
Hardware Configuration

silabs.com | Building a more connected world. Rev. 1.2 | 5

4. Ways You can Use the Programmer

The following four sections describe four ways you can use the CBPROG-DONGLE.

4.1 In-Socket Firmware / NVM Programming

This workflow describes the process of programming loose devices using the Si5332-32SKT, Si5332-40SKT, Si5332-48SKT,
Si538X4X-44SKT, Si538X4X-56SKT, or Si538X4X-64SKT programming socket board. For nonfirmware-based solutions, this flow will
“burn” a complete configuration from CBPro into available NVM in the device. Si534x-8x devices shipped from Silicon Labs have two
NVM banks available to program (“burn”). Si5332 devices have a flexible NVM space. CBPro manages available NVM and programs
("burns") the available NVM when feasible. For Si5383/84 (firmware based) devices, this flow will flash a complete configuration from
CBPro in to the device.

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 6

The steps needed to program a device’s NVM are as follows:
1. Assuming the CBPro software is installed, connect the CBPROG-DONGLE adapter with the USB cable to the PC on which CBPro

was installed. Use the USB extender cable (provided with the kit) if your host PC is located far from the CBPROG-DONGLE.

Figure 4.1. PC to CBPROG-DONGLE Connection

2. Insert a base or previously pre-programmed (e.g. OPN) device into the socket.

Socket and device Orientation: It is important to ensure the device is in the correct orientation before powering up the board. If not
orientated correctly the software has a feature to auto-detect it is not able to read the part. Likely the reason is there is no part in
the socket or it is oriented incorrectly. The part will not be damaged if oriented incorrectly. The device has two circles on the part.
The smaller circle is the pin 1 indicator. Pin 1 on the socket is lined up with the U1 and dot symbol on the silk screen. 64-QFN and
44-QFN orientations are shown below. The same idea applies to 32-QFN, 40-QFN, and 48-QFN package ICs.

Si534xg-
Rxxxxx-GM

YYW
W

TTTTTT
 TW

64-QFNPin 1

x x

44-QFNPin 1

Si534xg-
Rxxxxx-GM

YYW
W

TTTTTT
 TW

Figure 4.2. Correct Orientation of a Device in the Socket

Note: Power is not applied to the socket’s VDD and VDDA pins unless explicit action by you within CBPro. It is safe to:
• Insert or remove a device in the socket before or after the socket has been connected to the main board.
• Insert or remove a device in the socket before or after power has been applied to the main board by connecting the USB cable

to your PC.

Power is only applied to the device when you perform a scan or initiate a burn. Power is off at all other times.
3. Connect the QFN Field Programmer Socket Board with the device into the CBPROG-DONGLE.

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 7

Field Programmer Main Board
Field Programmer
Socket Board

Figure 4.3. System from PC to Programming CBPROG-DONGLE Board to Field Programmer Socket Board

4. Start ClockBuilder Pro by locating the icon on your desktop or Windows Start Menu.

Figure 4.4. ClockBuilder Pro Icon

5. The ClockBuilder Pro Wizard main menu should now appear, as shown in the figure below. Select the “NVM Burn Tool” as shown.
Do not select EVB GUI.

Figure 4.5. ClockBuilder Pro Wizard

6. If this is the first time you are launching the NVM Program Tool and no socket board has been detected, the tool will prompt you to
select the device family you are targeting, as shown in the figure below:

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 8

Figure 4.6. Select Device Family Prompt

7. Once you insert the socket in the field programmer, the tool will detect it and automatically load the appropriate programming pan-
el:

Figure 4.7. Programming Panel

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 9

4.1.1 Programming In-socket, Firmware Based Devices

Refer to Figure 4.8 Programming In-socket, Firmware Based Devices on page 10 below.
1. Configure the I2C address and bus speed for the device.
2. Select the firmware source.

• Configuration + Program from Project File
The configuration defined by the specified project + the firmware release selected in the project file will be used to generate the
firmware image that will be flashed on the device. Note that different versions of CBPro may compute configuration registers
differently for the same design goals as improvements are made to CBPro.

• Configuration + Program from Firmware File
Flash a stand-alone hex or binary firmware file to the device. You must have previously exported the file in CBPro, or the file
was sent to you by Silicon Labs. The firmware image contains both configuration and program data. This option is useful if you
want to ensure the same configuration register data is flashed to the device regardless of the CBPro version this tool is running
on. Firmware images can be created from the CBPro dashboard using the Export tool, selecting the stand-alone file option.

3. Click the “Select …” button and select the file to flash to the device.
4. Click the “Scan for Device” button (optional): Click to detect device and report on part number, firmware version, and DESIGN_ID.

This is optional. You can click ‘Program NVM' without first scanning and all relevant pre-burn checks will be performed. Note a
device scan is also performed after the NVM burn has been completed, regardless of whether the burn completed successfully or
not.

5. Click the “Program NVM” button to flash device. In project file mode, CBPro will create a firmware image behind the scenes based
on the project file configuration, and then flash this on the device. The firmware download is verified via read back.

Figure 4.8. Programming In-socket, Firmware Based Devices

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 10

4.1.2 Programming In-socket, Non-Firmware Based Devices

Refer to Figure 4.9 Programming In-socket, Non-Firmware Based Devices on page 11 below.
1. Click the “Select Project” button and select the project file.
2. (Optional) Click the “Scan for Device” button to detect the device and report on part number, DESIGN_ID, and NVM bank state

(number of banks already burned, number available for burn). This is optional. You can click ‘Program NVM' without first scanning
and all relevant pre-burn checks will be performed, such as verifying there is a bank available to burn. Note a device scan is also
performed after the NVM burn has been completed, regardless of whether the burn completed successfully or not.

3. Click the “Program NVM” button to start the programming flow:
a. CBPro will compute the registers to program based on the design goals entered in the project file, using the latest algorithms

embedded in CBPro.
b. CBPro will write volatile configuration registers corresponding to the project.
c. CBPro will initiate a bank burn.
d. CBPro will force an NVM reload on the device.
e. CBPro will verify the bank burn by inspecting the bank pointer and read back the programmed registers.
f. CBPro will rescan for the device and update burn count at the bottom of the window.

Figure 4.9. Programming In-socket, Non-Firmware Based Devices

4.1.3 In-Socket Programming Status

During the programming process and if the programming is successful, you should see the following windows.

Figure 4.10. In-Socket Programming Status

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 11

4.2 In-System Firmware / NVM Programming

This workflow describes the process of programming a device mounted on a PCB. For Si538x/4x (not firmware based) devices, this
flow will “burn” a complete configuration from CBPro into one of the banks of NVM on the device, assuming an open NVM bank is
available. Devices shipped from Silicon Labs always have two NVM banks available to program (“burn”). If you don’t know how many
banks are still open to burn on your target device, CBPro can detect and report the number of remaining NVM banks. For Si5383/84
(firmware based) devices, this flow will flash a complete configuration from CBPro into the device.

The steps needed to program an “in-system” device’s NVM are as follows:
1. Assuming the CBPro software is installed, connect the adapter (CBPROG-DONGLE) board with the USB cable to the PC on which

CBPro was installed.

Figure 4.11. PC to CBPROG-DONGLE Connection

2. Lookup and verify the host I/O mode (I2C or SPI), the I2C address, and the interface I/O voltage level compatibility of your host’s
I/O voltage (for I2C or SPI) and the device.

The value set at the device register address of 0x0943 determines how the I/O supply voltages must be configured to communicate
reliably with the CBPROG-DONGLE. You can look up your device host I/O voltage using the “OPN Lookup” option in the NVM
Burn tool, as shown in Figure 4.12 OPN Lookup Option on page 12.

Figure 4.12. OPN Lookup Option

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 12

If you have a custom OPN mounted on your board (a part number with a 5 digit code in the middle of the part number, such as
Si5346B-A03260-GM), you should look up the host I/O setting (located at address of 0x0943) by selecting the OPN Lookup option.
A browser will open and you will then enter in your custom OPN, as shown below.

a. Select “Clock or Buffer”.
b. Enter in your full ordering part number (OPN). E.g., Si5346B-A03260-GM.
c. Click the blue arrow to lookup your OPN to verify the host I/O voltage setting of your device.
d. Click the addendum link.

Figure 4.13. OPN Lookup

3. When the utility displays the OPN’s files, click on Addendum to verify the I/O Power Supply setting of your device in the Data Sheet
Addendum.
“VDD (Core)” indicates the I/O supply for the Si534x-8x I2C/SPI interface will operate from a 1.8 V supply.
“VDDA (3.3 V)” indicates the I/O supply for the Si534x-8x I2C/SPI interface will operate from a 3.3 V supply. “VDDD” indicates the
I/O supply for the Si5332 I2C interface.

Figure 4.14 Finding VDDA Value on page 13 shows an example data sheet addendum showing VDDA (3.3 V).

Figure 4.14. Finding VDDA Value

4. Connect/wire the pins of the CBPROG-DONGLE to your host system with the target device. Use the female-to-female ribbon cable
to connect to your host board fitted with a standard 10-pin header. This assumes you included the 10-pin header on your PCB and
followed the recommended pinout and connections to the target on your PCB. Note the pinout diagram and descriptions in the
table below.

Figure 4.15. Interface Pins on Header (Front View of CBPROG-DONGLE)

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 13

Table 4.1. Interface Pin Connections from CBPROG-DONGLE

Pin # Description Wire to Your PCB? I2C 4-wire SPI 3-wire SPI

9 A0_CSB

(applies only for
Si534x-8x de-

vice)

3- or 4-Wire SPI Can be used to set I2C
address bit A0 high or
low. Routed to A0 device
pin on the programming
Field Programmer Socket
Boards.

Drives the chip select sig-
nal during SPI transac-
tions

Drives the chip select sig-
nal during SPI transac-
tions

10 VDD Never Supplies the Core VDD
voltage to the device
when using a program-
ming Field Programmer
Socket Board. Do not use
this pin for in-system pro-
gramming.

Supplies the Core VDD
voltage to the device
when using a program-
ming Field Programmer
Socket Board. Do not use
this pin for in-system pro-
gramming.

Supplies the core VDD
voltage to the device
when using a program-
ming Field Programmer
Socket Board. Do not use
this pin for in-system pro-
gramming.

7 SDA_SDIO Always Serial data signal for I2C
transactions.

Serial data out to device
for 4-wire SPI transac-
tions (MOSI).

Bidirectional Serial data
for 3-wire SPI transac-
tions (SDIO).

8 I2C_SEL1

(applies only for
Si534x-8x de-

vice)

Never Used to set I2C_SEL sig-
nal high to set the device
for I2C communication.
(Refer to specific part pin-
out and the programming
Field Programmer Socket
Board to determine
whether to use I2C_SEL1
or I2C_SEL2)

Used to put I2C_SEL sig-
nal low for SPI communi-
cation. (Refer to specific
part pinout and the pro-
gramming Field Program-
mer Socket Board to de-
termine whether to use
I2C_SEL1 or I2C_SEL2)

Used to put I2C_SEL sig-
nal low for SPI communi-
cation. (Refer to specific
part pinout and the pro-
gramming Field Program-
mer Socket Board to de-
termine whether to use
I2C_SEL1 or I2C_SEL2)

5 A1_CSB

(applies only for
Si534x-8x de-

vice)

4-Wire SPI Only Can be used to set I2C
address bit A1 high or
low. Routed to A1 device
pin on the programming
Field Programmer Socket
Boards.

Serial data from device
for 4-wire SPI transac-
tions (MISO).

Not used

6 I2C_SEL2

(applies only for
Si534x-8x de-

vice)

Never Used to set I2C_SEL sig-
nal high to set the device
for I2C communication.
(Refer to specific part pin-
out and the programming
Field Programmer Socket
Board to determine
whether to use I2C_SEL1
or I2C_SEL2)

Used to put I2C_SEL sig-
nal low for SPI communi-
cation. (Refer to specific
part pinout and the pro-
gramming Field Program-
mer Socket Board to de-
termine whether to use
I2C_SEL1 or I2C_SEL2)

Used to put I2C_SEL sig-
nal low for SPI communi-
cation. (Refer to specific
part pinout and the pro-
gramming Field Program-
mer Socket Board to de-
termine whether to use
I2C_SEL1 or I2C_SEL2)

3 SCLK Always Serial clock signal for I2C
transactions.

Serial clock signal for SPI
transactions.

Serial clock signal for SPI
transactions.

4 VDDA_VDDS Never Supplies the VDDA and
VDDS voltages to the de-
vice when using a pro-
gramming Field Program-
mer Socket Board. Do not
use this pin for in-system
programming.

Supplies the VDDA and
VDDS voltages to the de-
vice when using a pro-
gramming Field Program-
mer Socket Board. Do not
use this pin for in-system
programming.

Supplies the VDDA and
VDDS voltages to the de-
vice when using a pro-
gramming Field Program-
mer Socket Board. Do not
use this pin for in-system
programming.

1 GND Always GND GND GND

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 14

Pin # Description Wire to Your PCB? I2C 4-wire SPI 3-wire SPI

2 ID Never The programming Field
Programmer Socket
Boards provide a voltage
on this pin to identify the
board. For in-system pro-
gramming, this pin should
be grounded or not con-
nected to any signal.

The programming Field
Programmer Socket
Boards provide a voltage
on this pin to identify the
board. For in-system pro-
gramming, this pin should
be grounded or not con-
nected to any signal.

The programming Field
Programmer Socket
Boards provide a voltage
on this pin to identify the
board. For in-system pro-
gramming, this pin should
be grounded or not con-
nected to any signal.

4.2.1 I2C Hardware Configuration

For I2C Communication connecting to an external device board, the following pins should be used from the:

CBPROG-DONGLE
• Pin 3: Serial Clock SCLK
• Pin 7: Serial Data SDA
• Pin 1: Ground

Si538x/4x DEVICE
• A0/CS: Drive this pin high or low to set the I2C Address.
• A1/SDO: Drive this pin high or low to set the I2C Address.
• I2C_SEL: Drive this pin high to select I2C communication.

Figure 4.16. Example I2C Connection to External System Target Board Using Jumper Wires (Si5346-EVB)

When using SPI Communication with long wires as shown above it is advisable to use 6 Mb/s bus speed or less.

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 15

4.2.2 SPI 3-Wire Hardware Configuration

For 3-wire SPI communication, when connecting to an external device board, the following pins should be used from:

CBPROG-DONGLE
• Pin 3: Serial Clock SCLK
• Pin 7: Serial Data SDIO for Data In and Out
• Pin 9: A0_CSB for Chip Select
• Pin 1: Ground

Si538x/4x DEVICE
• I2C_SEL: Drive this pin low to select SPI communication.

4.2.3 SPI 4-Wire Hardware Configuration

For 4-wire SPI communication, when connecting to an external device board, the following pins should be used from:

CBPROG-DONGLE
• Pin 3: Serial Clock SCLK
• Pin 7: Serial Data SDIO for Data In to device (MOSI)
• Pin 5: A1_SDO for Data Out of device (MISO)
• Pin 9: A0_CSB for Chip Select
• Pin 1: Ground

Si538x/4x DEVICE
• I2C_SEL: Drive this pin low to select SPI communication.

If this is the first time launching the NVM Program Tool, the tool will prompt user to select the device family they are targeting:

Figure 4.17. NVM Program Tool, Select Device Family

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 16

4.2.4 Programming In-system, Firmware Based Devices

Refer to Figure 4.18 Programming In-system, Firmware Based Devices on page 17 below.

After verifying the CBPro Dongle to device connections, execute the following steps. This example assumes a device is configured with
an I2C address of 0x6F, and an I2C bus speed of 400 kHz.

1. Select “Si5383/43 (firmware based)” in the Target Device drop down.
2. Click the Host Interface drop down:

a. Enter the I2C address of the device.
b. Select the communication bus speed.

3. Select the firmware source.
• Configuration + Program from Project File

The configuration defined by the specified project + the firmware release selected in the project file will be used to generate the
firmware image that will be flashed on the device. Note that different versions of CBPro may compute configuration registers
differently for the same design goals as improvements are made to CBPro.

• Configuration + Program from Firmware File
Flash a stand-alone hex or binary firmware file to the device. You must have previously exported the file in CBPro, or the file
was sent to you by Silicon Labs. The firmware image contains both configuration and program data. This option is useful if you
want to ensure the same configuration register data is flashed to the device regardless of the CBPro version this tool is running
on. Firmware images can be created from the CBPro dashboard using the Export tool, selecting the stand-alone file option.

4. Click the “Select Project …” button and select the project file to be written to the device.
5. (Optional) Click the “Scan for Device” button to detect device and report on part number, firmware version, and DESIGN_ID. This is

optional. You can click Program NVM' without first scanning and all relevant pre-program checks will be performed. Note a device
scan is also performed after the NVM programming has been completed, regardless of whether the programming completed suc-
cessfully or not.

6. Click the “Program NVM” button to flash device. In project file mode, CBPro will create a firmware image behind the scenes based
on the project file configuration, and then flash this on the device. The firmware download is verified via read back.

Figure 4.18. Programming In-system, Firmware Based Devices

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 17

4.2.5 Programming In-system, Non-firmware Based Devices

Refer to Figure 4.19 Programming In-system, Non-firmware Based Devices on page 18 below.

After verifying the CBPro Dongle to device connections, execute the following steps. This example assumes a device is configured with
the host I2C interface operating in 3.3 V I/O mode with an I2C address of 0x6F, and an I2C bus speed of 400 kHz.

1. Select “Si538x/4x (not firmware based) in the Target Device drop down.
2. Click the Host Interface drop down: (Review: host I/O mode (I2C or SPI), the I2C address, and I/O voltage level to determine

these settings)
a. Select communication protocol for the device.
b. Select the I/O voltage for the device
c. For I2C, enter the address of the device.
d. Select the communication bus speed.

3. Click the “Select Project …” button and select the project file to be written to the device.
4. (Optional) Click the “Scan for Device” button to detect the device and report on part number, DESIGN_ID, and NVM bank state

(number of banks already burned, number available for burn). This is optional. You can click Program NVM' without first scanning
and all relevant pre-programming checks will be performed, such as verifying there is a bank available to burn. Note a device scan
is also performed after the NVM burn has been completed, regardless of whether the burn completed successfully or not.

5. Click the “Program NVM” button to start the programming flow:
a. CBPro will compute the registers to program based on the design goals entered in the project file, using the latest algorithms

embedded in CBPro.
b. CBPro will write volatile configuration registers corresponding to the project.
c. CBPro will initiate a bank burn.
d. CBPro will force an NVM reload on the device.
e. CBPro will verify the bank burn by inspecting the bank pointer and read back the programmed registers.
f. CBPro will rescan for the device and update burn count at the bottom of the window.

Figure 4.19. Programming In-system, Non-firmware Based Devices

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 18

4.2.6 Programming Status

During the programming process and if the programming is successful, you should see the following windows:

Figure 4.20. Programming Status

4.3 In-System Volatile Register Programming and Register Debug

This workflow allows users to use the full CBPro configuration Wizard and EVB GUI to make volatile changes to a device’s configura-
tion and inspect the state of various status registers. There are two ways you can interact with your PCB-based device using the field
programmer:
• Use CBPro Design Dashboard to edit your device configuration, and write out changes directly to your device.
• Launch the EVB GUI, to inspect registers.

All of the relevant CBPro features available when working with a Silicon Labs EVB will be available to you, with these exceptions:
• There is no voltage regulator control or voltage/current readings of any kind.
• You must configure the host interface settings so that CBPro can use the device correct communication scheme/wire out.
• If you write out your design/project file, all registers configured via the “Host Interface” section of the wizard are written to the device

(these registers are skipped when writing a design to a Silicon Labs EVB).

4.3.1 Using the CBPro Design Dashboard

When you launch CBPro, instead of clicking the NVM Burn Tool, open your existing project file or a sample file to open the design
dashboard window as shown in the figure below.

Figure 4.21. Open Design Project File, and see Field Programmer Detected

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 19

4.3.2 Overview of CBPro Configuration Wizard and the Field Programmer

When you open a ClockBuilder Pro project file, you are taken to the design dashboard. This is a gateway to perform activities against
your design, including writing your project’s configuration to a device using the CBPro Dongle. For example, in the figure below, a
Si5345 project has been opened and the CBPro Dongle has been detected, and no socket is present:

Figure 4.22. Overview of CBPro Configuration Wizard and the Field Programmer

With a click of the “Write Design to DUT” button, you can reconfigure the Si5345 in-system to test changes to your design. The “Open
EVB GUI” button can be used to launch the EVB GUI and peek/poke registers on the in-system device. See Section 4.3.4 Using the
EVB GUI with In-system Devices to learn more.

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 20

4.3.2.1 Using the Dashboard with In-system Devices

If the CBPro Dongle is connected via USB and detected by CBPro, you will see will see a pulldown to configure the host interface be-
tween the dongle and your PCB, as shown in the figure below. Refer to Section 4.2 In-System Firmware / NVM Programming for infor-
mation to connect the CBPro Dongle to your hardware.

Figure 4.23. Field Programmer Detected

Click the interface pulldown to configure the communication interface, as shown in the figure below. For firmware based devices (e.g.
Si5383), the I2C address and bus speed need to be configured. For non-firmware based devices (e.g. Si5340, Si5341), The
communication protocol and the I/O voltage need to be configured. If the communication protocol is I2C, the address and bus speed will
need to be configured as well.

Figure 4.24. Communication Interface Selection

Once configured, you can write out your design to the device by clicking the Write Design to DUT button:

Figure 4.25. Write Design to DUT

Or on any configuration page in the wizard:

Figure 4.26. Write to FP

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 21

When you initiate a project write to the DUT, CBPro will first try to verify the DUT is present via the communication interface you have
configured. This is normally accomplished by trying to read device identification register on the device, such as PN_BASE on Si538x/4x
devices.

If it cannot read these registers, the DUT write will be aborted and you will see an error message like the example shown in the figure
below:

Figure 4.27. Error Message

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 22

4.3.2.2 Using the CBPro Dashboard with In-socket Devices

In the design dashboard, you will see a pulldown to configure the host interface between the CBPro Dongle and the socket. If the con-
nected socket is not compatible with the selected CBPro project file, an error message will be displayed and the interface configuration
pulldown will be disabled, as shown in the figure below.

Figure 4.28. Socket Compatibility

Click the interface pulldown, configure the interface, and click the slider power to turn on the socket power. For firmware based devices
(e.g. Si5383), the I2C address and bus speed need to be configured. For non-firmware based devices (e.g. Si5340, Si5341), the com-
munication protocol and the I/O voltage need to be configured. If the communication protocol is I2C, the address and bus speed will
need to be configured, as shown in the figure below.

Note: Manually powering up the socket is an optional step. If you click the “Write Design to DUT” button, CBPro will automatically pow-
er up the socket (and you will see it switch from Off to the On state). Socket power refers to VDD and VDDA power on the device.

Figure 4.29. Interface Settings

Once configured, you can write out your design to the device by clicking the Write Design to DUT button:

Figure 4.30. Write Design to DUT

Or on any configuration page in the wizard:

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 23

Figure 4.31. Write Design to FP

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 24

4.3.3 Launching the CBPro EVB GUI

From the CBPro Wizard screen, click the EVB GUI button to open the EVB GUI screen.

Figure 4.32. Open EVB GUI Screen

If this is the first time launching the EVB GUI and no socket board is detected, the tool will prompt user to select the device family they
are targeting:

Figure 4.33. Select Device Family Prompt

If a socket is connected, the family is auto selected based on the socket. The tool polls for socket state every 500 milliseconds and will
detect if a socket is present or has been changed.

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 25

Figure 4.34. Socket Detected, Auto-selected Family Prompt

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 26

4.3.4 Using the EVB GUI with In-system Devices

Connect the CBPro Dongle to the PCB mounted device. Refer to Section 4.2 In-System Firmware / NVM Programming for information
to connect the CBPro Dongle to your hardware. Click the Config button and click the Device Family pulldown to select either a firmware
based device or a non-firmware based device. Then configure the communication protocol, bus speed and I/O voltage (non-firmware
devices) for the device, as shown in the figure below.

Note: For firmware based devices the communication protocol available is I2C with a 3.3 V I/O voltage. For non-firmware based devi-
ces, there is a selection of SPI 4-wire, SPI 3-wire, or I2C and the I/O voltage must be selected.

Figure 4.35. Configuring an In-system Device

After the configuration is complete, click the Scan button. The Part Number and Design ID fields should update with the device informa-
tion along with the Info tab fields, as shown in Figure 4.36 In-System Scan Prompt and DUT Register Editor Tab on page 28. Now the
DUT Register Editor tab can be used to make volatile register value changes to the device and the Status Registers tab can be used to
monitor the status of the device.

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 27

Figure 4.36. In-System Scan Prompt and DUT Register Editor Tab

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 28

4.3.5 Using the EVB GUI with In-socket Devices

CBPro will detect the connected socket when the EVB GUI is started. Click the Config button to configure the communication protocol,
address (I2C), bus speed, and the I/O voltage (non-firmware based devices), as shown in the figure below.

Note: For firmware based devices the communication protocol available is I2C with a 3.3 volt I/O voltage. For non-firmware based devi-
ces, there is a selection of SPI 4-wire, SPI 3-wire, or I2C and the I/O voltage must be selected.

Figure 4.37. Configuring an In-socket Device

After the configuration is complete, click the Socket Power slider and the Scan button. The Part Number and Design ID fields should
update with the device information along with the Info tab fields, as shown in Figure 4.38 In-Socket Scan Prompt and DUT Register
Editor Tab on page 30. Now the DUT Register Editor tab can be used to make volatile register value changes to the device and the
Status Registers tab can be used to monitor the status of the device.

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 29

Figure 4.38. In-Socket Scan Prompt and DUT Register Editor Tab

UG286: ClockBuilderPro™ Field Programmer Kit
Ways You can Use the Programmer

silabs.com | Building a more connected world. Rev. 1.2 | 30

5. CBPROG-DONGLE Schematic

Figure 5.1. CBPROG-DONGLE Schematic (1 of 3)

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 31

Figure 5.2. CBPROG-DONGLE Schematic (2 of 3)

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 32

Figure 5.3. CBPROG-DONGLE Schematic (3 of 3)

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 33

Figure 5.4. 64-Pin Socket Board Schematic

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 34

Figure 5.5. 56-Pin Socket Board Schematic

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 35

Figure 5.6. 44-Pin Socket Board Schematic

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 36

Figure 5.7. Si5332 48-Pin Socket Board Schematic

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 37

Figure 5.8. Si5332 40-Pin Socket Board Schematic

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 38

Figure 5.9. Si5332 32-Pin Socket Board Schematic

UG286: ClockBuilderPro™ Field Programmer Kit
CBPROG-DONGLE Schematic

silabs.com | Building a more connected world. Rev. 1.2 | 39

6. Bill of Materials

6.1 CBPROG-DONGLE Bill of Materials

UG286: ClockBuilderPro™ Field Programmer Kit
Bill of Materials

silabs.com | Building a more connected world. Rev. 1.2 | 40

6.2 Si538x4x-64SKT-DK Socket Board BOM

6.3 Si538x4x-56SKT-DK Socket Board Bill of Materials

6.4 Si538x4x-44SKT-DK Socket Board Bill of Materials

UG286: ClockBuilderPro™ Field Programmer Kit
Bill of Materials

silabs.com | Building a more connected world. Rev. 1.2 | 41

6.5 Si5332-48SKT-DK Socket Board Bill of Materials

6.6 Si5332-40SKT-DK Socket Board Bill of Materials

6.7 Si5332-32SKT-DK Socket Board Bill of Materials

UG286: ClockBuilderPro™ Field Programmer Kit
Bill of Materials

silabs.com | Building a more connected world. Rev. 1.2 | 42

7. Appendix A. Troubleshooting

7.1 Why can’t I communicate with the device on my hardware using the CBPro Dongle?

There are multiple windows in the CBPro software that use or provide communication to the device connected to the CBPro Dongle.
The examples below show the windows and type of errors you may encounter. All of these situations can be resolved using the follow-
ing steps.

General Steps to Resolve a Communication Issue (Non-Firmware based devices)
1. Verify which communication protocol your hardware is using – SPI or I2C.
2. Verify the voltage level on the I2C_SEL control pin on the DUT. This level should be logic low (0 V) if your communication protocol

is SPI. This level should be logic high (1.8 V or 3.3 V – refer step 3 below) if your communication protocol is I2C.
3. Verify the value of the IO_VDD_SEL bit (Register 0x0943[0]) for the DUT. If IO_VDD_SEL is 0, the I/O Voltage setting should be

1.8V. If IO_VDD_SEL is 1, the I/O Voltage setting should 3.3V. If you do not know this value, you can try both voltages to deter-
mine which voltage level will work successfully.

4. If the communication protocol is I2C, verify the I2C address setting (Register 0x000B) for the device. You may also need to verify
the voltage level on the A0/CSb and A1/SDO pins if they are not connected to the field programmer. The level on these pins set bit
1 and bit 0 in the I2C address. If these are connected to the CBPro Dongle, they are both driven low.

General Steps to Resolve a Communication Issue (Firmware based devices)
1. Verify the I2C address for the device.
2. Verify the voltage level on the A0/CSb and A1/SDO pins if they are not connected to the field programmer. The level on these pins

set bit1 and bit 0 in the I2C address. If these are connected to the CBPro Dongle, they are both driven low.

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 43

Communication Error Using the Design Dashboard Window

If the design dashboard experiences an error communicating the device, the following error window will appear.

Figure 7.1. Communication Error Using Design Dashboard

This example window shows how to adjust the communication settings of the dashboard to resolve communication error.

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 44

Figure 7.2. Design Dashboard Communication Error Solution

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 45

Communication Error Using the Burn NVM Window

The following window shows a communication error in the NVM Burn window. This error will appear after the Scan for Device button is
pressed.

Figure 7.3. Burn NVM Error Message

The following window shows how to adjust the communication settings of the dashboard to resolve communication error.

Figure 7.4. Burn NVM Error Message Solution

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 46

Communication error using the EVB GUI window

The following window shows an example of the error produced when the EVB GUI experiences an I2C error.

Figure 7.5. EVB GUI I2C Error

The following window shows an example of the error produced when the EVB GUI experiences an SPI error.

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 47

Figure 7.6. EVB GUI SPI Error

The following window shows how to change the communication settings using the EVB GUI window.

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 48

Figure 7.7. EVB GUI Solution

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 49

7.2 Why do I have a communication error when I write my new project to the Si534x-8x device?

New Plan Changes the IO_VDD_SEL Bit (Register 0x0943[0]) Value

In order for the CBPro Dongle to communicate with the device correctly, the dongle’s IO voltage needs to match the IO_VDD_SEL bit in
the device. If the plan changes this bit during the writing process, communication will fail. To determine if the new plan is changing this
bit, perform the following steps:
• Read the current value in the device by using the DUT Register Editor tab in the EVB GUI window.
• Determine if the new plan changes the value. This can be done by looking at the Host Interface tab in the Design Dashboard of the

new project.
• If VDD (Core) radio button selected and 0x943 = 0, no change from new plan,

Else VDD (Core) radio button selected and 0x943 = 1, new plan is changing IO_VDD_SEL refer to 7.3 How do I write a project
file to the device that changes the I/O Power Supply setting in Si534x-8x devices (IO_VDD_SEL bit)?

• If VDDA (3.3 V) radio button selected and 0x943 = 1, no change from new plan,

Else VDDA (3.3 V) radio button selected and 0x943 = 0, new plan is changing IO_VDD_SEL refer to 7.3 How do I write a project
file to the device that changes the I/O Power Supply setting in Si534x-8x devices (IO_VDD_SEL bit)?

The following window shows how to read the IO_VDD_SEL bit from the device.

Figure 7.8. Read IO_VDD_SEL Bit from Device

The following window shows how to determine the value of the IO_VDD_SEL bit that will be written to the device from the project file.

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 50

Figure 7.9. Determine the Value of IO_VDD_SEL Bit Written to Device

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 51

7.3 How do I write a project file to the device that changes the I/O Power Supply setting in Si534x-8x devices (IO_VDD_SEL
bit)?

General Steps to Change I/O Power Supply Setting with a Project File

In order for the field programmer to communicate with the device correctly, the field programmer’s IO voltage needs to match the
IO_VDD_SEL bit in the device and use the correct serial communication protocol to match the I2C_SEL pin on the device. This is not
automatically detected by the GUI or the CLI command.

If the new project changes the IO_VDD_SEL bit, the following summarized steps need to be performed. The flow chart and figures that
follow provide the details for each of these steps. There are detailed steps using CBPro Graphical User Interface and detailed steps
using the CBPro Command Line interface.

1. Establish communication with the device to be programmed and determine the current value of the IO_VDD_SEL (0x0943[0]) bit.
2. The current value of the IO_VDD_SEL bit matches the value of the new plan to be written to the device?

• Yes – Proceed to step 3.
• No – Change the IO_VDD_SEL bit to match the value in the new plan. Re-establish communication with the device after chang-

ing the IO_VDD_SEL value (change the field programmer I/O Voltage to match new value for IO_VDD_SEL).
3. Write the new plan to the device.

Scan for device

0x0943 = 0x00?

In New Plan
0x0943 = 0x00?

Write Register
0x0943 = 0x01

No

Write New Plan
to the Device

Select 3.3V for I/O
Voltage on the Field

Programmer

Yes

Select 1.8V for I/O
Voltage on the Field

Programmer
(probably already

set)

Yes

In New Plan
0x0943 = 0x01?

Write Register
0x0943 = 0x00

No

Select 1.8V for I/O
Voltage on the Field

Programmer

Select 3.3V for I/O
Voltage on the Field

Programmer
(probably already

set)

Yes

No
Communication –

Adjust Comm
Settings (I/O

Voltage,
communication

protocol, I2C
address, etc.)

Error after Scan? Yes

A

B

C

No

Read Register
0x0943

No

Figure 7.10. General Steps to Change I/O Power Supply Setting with a Project File

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 52

Steps using CBPro Graphical User Interface
1. Select the ‘EVB GUI’ button on the home screen as shown to attempt communication with the device.

Figure 7.11. EVB GUI Button

a. Select the ‘DUT Register Editor’ tab.
b. Determine the correct device communication protocol and setup CBPro accordingly as shown. For an In-socket device, click

the Socket Power slider to power up the device. For In-system devices, click the Device Family pulldown and select the appro-
priate device family.

c. Click the Scan button to verify communication with the device.
d. If communication is successful, the device part number and design ID will be updated. If communication is not successful, the

part number field will display -ERR- and the DUT register tab will be disabled.

Configuring communication settings:

Figure 7.12. Configuring Communication Settings

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 53

Examples of a Communication failure for I2C and SPI:

Figure 7.13. I2C and SPI Communication Failure Examples

2. Match the IO_VDD_SEL bit to the value in the plan that will be written to the device.
a. If the IO_VDD_SEL bit already matches the value in the plan to be written, skip to step 3.
b. If the IO_VDD_SEL bit is not correct, change the value and write the new value to the device (see the figure below).
c. Re-configure the communication settings of the field programmer to re-establish communication to the device.

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 54

Figure 7.14. Re-configuring Communication Settings of the Field Programmer

3. Write your new plan to the device.

Figure 7.15. Write New Plan to Device

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 55

Steps using CBPro Command Line Interface
1. Attempt to communicate with the Si534x8x device and determine the current value of the IO_VDD_SEL bit.

SPI communication Examples:

CBProDeviceRead.exe --io-voltage 1.8 --mode spi4wire --speed 1M --family si538x4x --registers 0x0943

CBProDeviceRead.exe --io-voltage 3.3 --mode spi4wire --speed 1M --family si538x4x --registers 0x0943

Note: The commands above are examples. Refer to the document and help for the CBPro CLI for your specific configuration.

I2C communication Examples:

CBProDeviceRead.exe --io-voltage 1.8 --mode i2c --speed 100k --i2c-address 0x68 --family si538x4x --registe
rs 0x0943

CBProDeviceRead.exe --io-voltage 3.3 --mode i2c --speed 100k --i2c-address 0x68 --family si538x4x --registe
rs 0x0943

Note: The commands above are examples. Refer to the document and help for the CBPro CLI for your specific configuration.

2. Match the IO_VDD_SEL bit to the value in the plan that will be written to the device.
a. A simple text file will need to be created that will write register 0x943 to 0x00 or 0x01.

To write 0x01 to 0x0943, the text file should contain the following single line of text:

0x0943,0x01

To write 0x00 to 0x0943, the text file should contain the following single line of text:

0x0943,0x00

b. Run the CLI command below to change the IO_VDD_SEL bit.

SPI Example:

CBProDeviceWrite.exe --mode spi4wire --speed 4M --io-voltage 3.3 --family si538x4x --registers simple_t
ext_file.txt

I2C Example:

CBProDeviceWrite.exe --mode i2c –i2c-address 0x68 --speed 400K --io-voltage 3.3 --family si538x4x --reg
isters simple_text_file.txt

Note: The commands above are examples. Refer to the document and help for the CBPro CLI for your specific configuration.

3. Write the new plan to the part.

SPI Example:

CBProDeviceWrite.exe --mode spi4wire --speed 4M --io-voltage 3.3 --family si538x4x --project your_plan_name
.slabtimeproj

I2C Example:

CBProDeviceWrite.exe --mode i2c –i2c-address 0x68 --speed 400K --io-voltage 3.3 --family si538x4x --projec
t your_plan_name.slabtimeproj

Note: The commands above are examples. Refer to the document and help for the CBPro CLI for your specific configuration.

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 56

7.4 I burned a project file to my device with a new Base I2C address, but the base address in the device was not changed
after the burn process was complete.

The I2C address will not be changed during the burn process. Changes to the base I2C address in the CBPro Configuration Wizard will
be included in exports and the project file used to create orderable part numbers. However, this change is not burned to the device
using the NVM Burn Tool. See the note highlighted in the figure below.

Figure 7.16. Base I2C Address

To permanently change the I2C base address on your device, you need to use the I2C Address Burn Tool. See the figures below to use
the tool.

Figure 7.17. I2C Address Burn Tool

UG286: ClockBuilderPro™ Field Programmer Kit
Appendix A. Troubleshooting

silabs.com | Building a more connected world. Rev. 1.2 | 57

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).

www.silabs.com/CBPro

Timing Portfolio
www.silabs.com/timing

SW/HW
www.silabs.com/CBPro

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other
products or brand names mentioned herein are trademarks of their respective holders.

	1. Kit Contents
	2. Software Download and Installation
	3. Hardware Configuration
	4. Ways You can Use the Programmer
	4.1 In-Socket Firmware / NVM Programming
	4.1.1 Programming In-socket, Firmware Based Devices
	4.1.2 Programming In-socket, Non-Firmware Based Devices
	4.1.3 In-Socket Programming Status

	4.2 In-System Firmware / NVM Programming
	4.2.1 I2C Hardware Configuration
	4.2.2 SPI 3-Wire Hardware Configuration
	4.2.3 SPI 4-Wire Hardware Configuration
	4.2.4 Programming In-system, Firmware Based Devices
	4.2.5 Programming In-system, Non-firmware Based Devices
	4.2.6 Programming Status

	4.3 In-System Volatile Register Programming and Register Debug
	4.3.1 Using the CBPro Design Dashboard
	4.3.2 Overview of CBPro Configuration Wizard and the Field Programmer
	4.3.2.1 Using the Dashboard with In-system Devices
	4.3.2.2 Using the CBPro Dashboard with In-socket Devices

	4.3.3 Launching the CBPro EVB GUI
	4.3.4 Using the EVB GUI with In-system Devices
	4.3.5 Using the EVB GUI with In-socket Devices

	5. CBPROG-DONGLE Schematic
	6. Bill of Materials
	6.1 CBPROG-DONGLE Bill of Materials
	6.2 Si538x4x-64SKT-DK Socket Board BOM
	6.3 Si538x4x-56SKT-DK Socket Board Bill of Materials
	6.4 Si538x4x-44SKT-DK Socket Board Bill of Materials
	6.5 Si5332-48SKT-DK Socket Board Bill of Materials
	6.6 Si5332-40SKT-DK Socket Board Bill of Materials
	6.7 Si5332-32SKT-DK Socket Board Bill of Materials

	7. Appendix A. Troubleshooting
	7.1 Why can’t I communicate with the device on my hardware using the CBPro Dongle?
	7.2 Why do I have a communication error when I write my new project to the Si534x-8x device?
	7.3 How do I write a project file to the device that changes the I/O Power Supply setting in Si534x-8x devices (IO_VDD_SEL bit)?
	7.4 I burned a project file to my device with a new Base I2C address, but the base address in the device was not changed after the burn process was complete.

